
Approach 
Coal is a complex combustible rock made up of organic and inor

ganic mineral components, which contain many elements. 
bustion, elements present in the organic and mineral components of coal 
are redistributed, as a result of high temperatures, into new gaseous 
and solid phases. 
be uniformly distributed throughout a grain, enriched in certain grains 
or areas of grains, or present as coatings on grains or adsorbed onto 
grain surfaces. 
and the trace element content are important variables controlling the 
combustion and mobility of elements in coal. y ash, the original 
composition of the feed coal, the combustion conditions, the size of the 
fly ash particles, and the fly ash mineralogy influence the distribution and 
mobility of trace metals. 

Figure 1. A coal-fired power plant in Indiana that uses low-sulfur coal from the 
Powder River Basin, Wyoming. 

Characterization and Modes of Occurrence of Elements in Feed Coal 
and Fly Ash—An Integrated Approach 

To characterize the chemistry and mineralogy of these components, 
the USGS applied an analytical approach involving (1) highly sensitive 
chemical analysis of feed coal and fly ash, (2) radiographic techniques 
that quantify the distribution and abundance of radioactive particles, (3) 
petrographic analysis, X-ray diffraction analysis, and microbeam analy
sis, including element concentration mapping of small fly ash grains, 
and (4) analysis of leaching extracts that selectively dissolve certain 
components of coal or fly ash to simulate environmental conditions. 
accomplish this, we organized a team of geologists, geochemists, chem
ists, coal technologists, and engineers from the USGS, State geologic 
surveys, universities, and electric utility companies. 

Elements in Feed Coal and Fly Ash 

Determination of elements in feed coal is important because the 
content, distribution, and behavior of elements during and after combus
tion depend in large part on the content and distribution of trace elements 
in the feed coal. ned by the 
1990 Clean Air Act Amendments (U.S. Statutes at Large, 1990) are 
important because they can be potentially released into the environment 
during coal utilization. 
in the compositions of the feed coal stocks. 
feed coals are higher in arsenic (As), chromium (Cr), cobalt (Co), iron 
(Fe), lead (Pb), and uranium (U) than Indiana plant feed coals (table 
1), whereas the Indiana power-plant feed coals are higher in barium 
(Ba), calcium (Ca), magnesium (Mg), strontium (Sr), and phosphorus 
(P) than Kentucky plant feed coals (Brownfield and others, 1999). 
composition of the fly ash reflects the original element content of the 
feed coal (table 1). 
feed coal and fly ash analyzed in this study displayed considerable 
variability (Affolter and others, 1997) during the sampling period (fig. 2). 
As an example, figure 2 shows selected element contents in the Kentucky 

Introduction 
Despite certain environmental concerns, coal is likely to remain an 

important component of the United States energy supply, partly because 
it is the most abundant domestically available fossil fuel. 
concerns about coal combustion for electricity production is the potential 
release of elements from coal and coal combustion products (CCPs)—fly 
ash—to the environment. 
reliable, and comprehensive information on the contents and modes 
of occurrence of selected elements in power-plant feed coal and fly 
ash. 
electric utilities to determine the chemical and mineralogical properties 
of feed coal and fly ash. rst study analyzed coal and fly ash from a 
Kentucky power plant, which uses many different bituminous coals from 
the Appalachian and Illinois Basins. 
ranged from 2.5 to 3.5 percent. 
fly ash from an Indiana power plant, which uses subbituminous coal 
from the Powder River Basin (fig. 1). 
ranged from 0.23 to 0.47 percent. 
our approach and results are presented in this report. 

Table 1. Ash yield and selected mean element contents of feed coal and fly ash 
from the Kentucky and Indiana power plants. 
[All elements are presented on an as-determined ash basis. 
coal is on a whole coal basis. 
1990 Clean Air Act] 

Kentucky power plant Indiana power plant 
Element Feed coal Fly ash Feed coal Fly ash 

Percent 
(ash) 10 6.2 
Ca 2.6 2.6 16 21 
Fe 13 12 3.3 4.0 
Mg .48 .50 3.5 3.8 
P .13 .13 .49 .61 

Parts per million 
As* 120 170 17 18 
Ba 560 600 5700 7400 
Cd* 3.6 5.5 1.1 1 
Co* 45 59 27 31 
Cr* 150 170 90 95 
Hg* .07 .39 .07 .01 
Ni* 170 220 56 75 
Pb* 110 150 19 42 
Sr 730 780 4000 4200 
U* 16 19 8.9 9.0 
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Figure 4.    Scanning electron microscope image of an Indiana power-plant fl y ash 
grain showing exsolution dendrites of chromium-bearing magnetite in a matrix of 
feldspar and pyroxene. 

Figure 3.    Photograph (left) of a glassy fl y ash grain and its fi ssion track radio-
graph (right) from an Indiana power plant. Uranium distribution and concentration 
are indicated by the location and density of the fi ssion tracks in the radiograph. 
Photograph and radiograph by Robert A. Zielinski (USGS).

Figure 2.    Temporal variation of selected elements in the feed coal (A) and 
in the fl y ash (B) from the Kentucky power plant during the 16-month sample 
period.

feed coal and fl y ash during the 16-month sample period.  
tions refl ect the multiple sources of feed coal, from numerous mines in 
the Illinois and Appalachian Basins (as many as 20 sources were used 
within one month).   y ash displayed less 
variability (Affolter and others, 1999) because of the single coal source 
(Wyodak-Anderson coal zone, Powder River Basin).  
feed coal are important because the greater the variability within the feed 
coal, the greater the variability in the fl y ash and the more diffi cult it is 
to predict the properties of the fl y ash, including modes of occurrence of 
trace elements in the fl y ash.

The characterization of an element in coal and what happens to 
that element during the combustion process is shown by the following 
example.  
8.9 ppm, respectively (table 1), and the uranium content of the fl y ashes 
is 19 and 9.0 ppm, respectively.  
coals is organically bound, with lesser amounts associated with uranium-
bearing minerals such as apatite, monazite, and zircon.  
and form of radioactive elements in fl y ash determine the availability 
of these elements for release to the environment during ash utilization 
or disposal.   y ash is uniformly distributed throughout the 
glassy grains of the fl y ash (fi g. 3).  
potentially leachable uranium suggests that the rate of release of uranium 
will be slow and controlled by the very slow rate at which the ash grains 
dissolve (Zielinski and Finkelman, 1997).

Mineralogy of Feed Coal and Fly Ash

Determination of minerals in coal and fl y ash is important because 
minerals affect coal and fl y ash utilization, and the location and 
leachability of elements, as well as control the acidity (pH) during 
interaction with water.  
power plants contain common rock-forming minerals, primarily well-
crystallized quartz and kaolinite (table 2).  
coal, higher amounts of arsenic and mercury are primarily found in 
pyrite; chromium is found in illite; and cadmium is found in sphalerite.  
In the Indiana power-plant coal, the higher amounts of barium, 
phosphorus, and strontium are found in crandallite group minerals and 
apatite.

X-ray diffraction (XRD) analysis of the Kentucky power-plant fl y 
ash samples determined that the major components are glass, mullite, and 
quartz, with minor amounts of illite, hematite, and spinel group minerals 
(table 2).   y ash samples 
revealed a predominance of glass, perovskite, lime, and gehlenite, with 
minor amounts of quartz, apatite, periclase, and mullite (table 2).  
example of the importance of studying the mineralogy of fl y ash is 

shown in fi gure 4.  
ronmental concern.   y 
ash grains determined that these elements occur in chromium-, nickel-, 
and cobalt-bearing iron-oxide-rich particles (fi g. 4), which are unlikely to 
be released to the environment.

Element intensity mapping using the electron microprobe scans the 
sample for relative intensity of individual elements at each counting 
point and helps us to develop a better understanding of modes of occur-
rence and potential release of selected elements to the environment.  
example, fi gure 5 shows a distinct rim of calcium and sulfur resulting 
from a thin anhydrite (CaSO

4
) coating on an Indiana power-plant fl y ash 

grain (Brownfi eld and others, 1999).
In the Kentucky power-plant fl y ash, higher amounts of arsenic, 

chromium, nickel, and cobalt are related to the presence of abundant 
pyrite and relict magnetite in the feed coal, and the higher amounts of 
cadmium are related to the sphalerite in the feed coal.  
magnesium-, and phosphorus-rich mineral phases in the Indiana power-
plant fl y ash (table 2) can be attributed to alteration of volcanic ash in 
the feed coal.

Leaching Studies

Coal and CCPs can alter the composition of solutions they contact 
through water-rock interactions.   cant environmental 
consideration in the use of coal for energy production, especially because 
CCPs can be used in building materials and as soil amendments, 
and also are disposed of in surface impoundments.  These water-rock               
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Table 2. X-ray diffraction and scanning electron microscope results of feed coal and fly ash from the Kentucky and Indiana power plants. 
[Listed in order of relative abundance. Ma= major (>10 percent); Mi=minor (5 to 10 percent); Tr=trace (less than 5 percent)] 

Kentucky power plant Indiana power plant 
Feed coal Fly ash Feed coal Fly ash 
Quartz-SiO2—Ma Glass—Ma Quartz-SiO2-alpha form—Ma Glass—Ma 
Kaolinite-Al2Si2O5(OH)4—Ma Mullite-Al6Si2O13—Ma Kaolinite-Al2Si2O5(OH)4—Ma Perovskite-CaTiO3—Ma 
Illite/Muscovite—Mi Quartz-SiO2—Ma Carbonates-CaCO3—Mi Lime-CaO—Ma 
Pyrite-FeS2—Mi Illite/Muscovite—Mi Biotite/Muscovite—Mi Gehlenite-Ca2Al(Al,Si)O7—Ma 
Calcite-CaCO3—Mi Hematite-Fe2O3—Mi Crandallite Group—Mi Quartz—Mi 
Sphalerite-(Zn,Fe)S—Tr Magnetite-FeFe3O4—Mi Quartz-SiO2-beta form—Tr Apatite-Ca5(PO4)3F—Mi 

Magnesioferrite-MgFe2O4—Mi Barite-BaSO4—Tr Periclase-MgO—Mi 
Steklite-KAl(SO4)2—Tr Apatite-Ca5(PO4)3F—Tr Mullite-Al6Si2O13—Mi 

Plagioclase—Tr Anhydrite-CaSO4—Tr 
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Figure 5. Element intensity maps showing relative abundances and distribu
tion of calcium (Ca), aluminum (Al), magnesium (Mg), and sulfur (S) in the same 
Indiana power-plant fly ash grain. The bright areas in the lower left image are 
periclase crystals (MgO). 
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Figure 6. The percentage of arsenic (As) leached from a Kentucky power-plant 
fly ash (40 ppm initial As) by deionized water in a flow-through column test 
compared to the percentage leached by two 18-hour batch tests. TCLP=U.S. 
Environmental Protection Agency’s toxicity characteristic leaching protocol. 

interactions can be characterized by techniques that (1) allow mixing 
of solids and leaching solutions that simulate environmental conditions 
and (2) determine modes of occurrence of trace elements in coal and 
CCPs. 

Leaching experiments range in duration and severity of chemical 
treatment. Different types of leaching tests provide different types of 
valuable information on the leaching behavior of coal and CCPs. As an 
example, figure 6 shows the percentage of arsenic (As) leached from a 
Kentucky power-plant fly ash (40 ppm initial As) in two 18-hour batch 
tests with different leaching solutions versus a flow-through column test 
with deionized water. The flow-through column test simulates long-
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term ash disposal in the natural environment. The amount of arsenic 
leached in the batch tests is relatively small, but the cumulative amount 
of arsenic leached during a column test can be a significant amount. 
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Figure 7. Leachate concentration of aluminum (Al), copper (Cu), iron (Fe), 
molybdenum (Mo), zinc (Zn), and pH during the leaching of a Kentucky power-
plant fly ash with deionized water. 



Figure 8. Scanning electrom microscope image of a spinel-rich Kentucky 
power-plant fly ash grain with a sulfate (steklite, KAl(SO4)2) enriched coating, 
which has been shown to control initial pH (<4) and leaching of some trace 
metals—see figure 7. 

Summary 

Many factors contribute to and control how coal and fly ash will 
affect the environment and the solutions that they contact. 
coal rank, amount of ash, coal mineralogy, and the trace element content 
are important variables controlling the combustion and leaching of coal. 
For fly ash, the original composition of the feed coal, the combustion 
conditions, the size of the fly ash particles, and the fly ash mineralogy all 
influence the distribution and mobility of trace metals. 

The USGS Energy Resources Program, in response to the need for 
scientific support for national policy decisions, continues to study the 
environmental effects of coal utilization. 
focus on the variability of coal quality and on the environmental and 
human-health impacts of using coal as one of the Nation’s primary 
energy sources. 
data on the amount and behavior of trace elements in coal and 
coal combustion products to better understand their effects on our 
environment. 
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